
Parallel SNNAP: from object-oriented design to multithreading
Evyatar Av-Ron, Yidao Cai, John H. Byrne and Douglas A. Baxter

Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory
University of Texas-Houston Medical School, Houston TX 77030

Summary
We developed a prototype model to examine the costs/benefits of parallel processing. The prototype
executed a variable number of coupled Hodgkin-Huxley models in parallel. The computational cost of
parallel processing was due mainly to communication between threads. Tests identified two issues that
determined the benefits from parallel processing: load balancing and model granularity. Load balancing
relates to how many threads run efficiently on a single processor. Model granularity relates to how many
ODEs are solved per thread. Compared to a nonparallel program (blue curve, upper figure above), a
multithreaded program which ran on a dual Xeon processor computer had execution times reduced by
50% for up to 8 threads with 25 ODEs per thread (red curve, lower figure above). The intersection of the
red and green curves in the figure above corresponds to the case when the computing time of 4 threads
executing 25 ODEs (with communication) was equal to 25 threads executing 4 ODEs (without
communication), i.e., 100 ODEs computed in total. The difference between the blue and green curves in
the upper figure displays the gain due to parallel processing. With communication, the overall gain
(difference between blue and red curves above) increased for larger numbers of ODEs, due to the
increase in the ratio between computing time and communication time.

A parallel version of SNNAP will provide biologists with a useful tool for simulating complex models of
neuronal, biochemical and molecular networks. With the decline in cost of multiple processor computers,
the necessary hardware will be readily available.

Simulation of load balancing and granularity

Gain from batch processing on a dual Xeon
(hyperthread) computer. The number of
compartments was systematically increased.
With sequential processing (i.e., all
compartments simulated on a single thread;
blue) the time required to complete a
simulation increased linearly with a slope of
15 sec/compartment. Simulating each
compartment on a separate thread (i.e.,
parallel processing) produced an ~2.5-fold
increase in performance (green).

Comparing computation times for solving an
equivalent number of ODEs, for multiple
threads of coupled HH models (4 ODEs) with
thread communication (blue), and multiple
threads of uncoupled HH models (4 ODEs)
with no communication among threads
(green), and 4 threads with multiple (4-50)
coupled ODEs (red). The green curve
represents batch processing corresponding to
the green curve in the upper figure. If the
threads communicate (blue), then the benefits
of parallel processing appear to be lost.
However, with proper granularity (red) the
benefits of parallel processing are realized,
i.e., the ratio of computation time versus
communication time increases.

1032.7

Supported by NIH grants R01 RR11626 and P01 NS38310.

SMP machine
architecture

Beowulf cluster
architecture

Parallel computer architecture

Hodgkin-Huxley model and compartmentalization

The Hodgkin-Huxley (HH) model (below, left) is represented by an object
diagram (below,right). The compartment module contains the membrane
potential ODE, while the activation and inactivation variables are defined
in the base classes activation and inactivation.

HH HH HH

thread1 thread2 threadn

...

Introduction to SNNAP, OO design and Java
SNNAP (Simulator for Neural Networks and Action Potentials; http://SNNAP.uth.tmc.edu)
is a versatile and user-friendly tool for rapidly developing and simulating realistic models
of neurons and neural networks. SNNAP is written in the Java programming language,
and is portable to almost any computer. SNNAP is being redesigned to take advantage of
OO features of Java (see accompanying abstract by Cai et al.). An OO design provides
many benefits, such as a multithreaded architecture.

A multithreaded architecture provides an execution framework for parallel processing.
Simulations often incorporate multiple 'computational elements', such as individual
neurons in a neural network or individual compartments in a model neuron. In an OO
design, each computational element is an object, and as such, may be executed on a
separate thread. On a parallel computer, multiple threads can be processed in parallel.

An example of classic dual thread architecutue is shown below with the graphical user
interface (GUI) running on one thread, and the model solver running on a second thread.

GUI

Thread1

Input

Output

User 	CE: Computational
element

Thread2

Solver

...

CE

CE

CE

OO design of computaional model

A generic class hierarchaca for a model.
A compatment class with
several possible subclasses.

Model

Network

Neuron(s)

Compartment(s)

Element(s)

Interaction(s)

Compartment

BiochemicalSpecie(s) Current(s) IonPool(s) SecondMessengerPool(s)

Compartment: dV/dt = Σ Ii

Ionic Current: I = gi Π f(IP, SMP, S) Π Gating (Driving Force)

Gating: dm/dt, dA/dt

Driving Force: (V - Vi), Nernst Eq.

Ion Pool: dIP/dt

Second Messenger Pool: dSMP/dt

Biochemical Specie: dS/dt = Σ Ri

Reaction: Ksyn, KdegS, Kf [S1][S2]

Synaptic Current: I = gi Π f(SMP, S) Π Gating (Driving Force)

SNNAP

Model
(SimulationSet)

Neuron
(Module_neu)

Compartment dV/dt
(Module_cmp)

Current Leak
(Module_vdg)

Gating
(Module_air)

Activation dm/dt
(Module_m)

Inactivation dh/dt
(Module_h)

Current Na
(Module_vdg)

Gating
(Module_air)

Current K
(Module_vdg)

Activation dn/dt
(Module_m)

200

160

120

80

40

0

of Compartments on a Single Thread ()
or

of Independent Threads each with a Compartment ()

Ti
m

e
R

eq
ui

re
d

to
 C

om
pl

et
e

a
Si

m
ul

at
io

n
(s

ec
)

0 5 10 15 20 25 30 35

Ti
m

e
R

eq
ui

re
d

to
 C

om
pl

et
e

a
Si

m
ul

at
io

n
(s

ec
)

0

5

25

20

15

10

of Independent Threads each with a Compartment ()
or

or
of Inter-Connected Threads each with a Compartment ()

of ODE's Solved on each of Four Inter-Connected Threads ()

0 10 20 30 40 50

A compartment may contain
numerous types of objects.

A object-oriented (OO) design uses encapsulation, inheritance and polymorphism
which leads to modular components. Incorporating new components is therefore
easier, and requires less debugging.

There are four major types of computer architectures that are used for parallel
computation: i) parallel vector processors, ii) shared-memory, symmetrical
multiprocessors (SMP), iii) distributed-memory, massively-parallel processors and
iv) distributed-memory, cluster computers (often referred to as a Beowulf clusters).
Of these four architectures, in terms of cost, the two most popular parallel-
processing paradigms are the SMP and cluster computers.

Coupling several HH models in series provides a test case for parallel processing.

load balancing: Distributing processing activity evenly among several processors.
granulatiry: Dividing a processing task into smaller subtasks.

